Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Sci Total Environ ; 890: 164070, 2023 Sep 10.
Article in English | MEDLINE | ID: covidwho-2320865

ABSTRACT

For three years, a large amount of manufactured pollutants such as plastics, antibiotics and disinfectants has been released into the environment due to COVID-19. The accumulation of these pollutants in the environment has exacerbated the damage to the soil system. However, since the epidemic outbreak, the focus of researchers and public attention has consistently been on human health. It is noteworthy that studies conducted in conjunction with soil pollution and COVID-19 represent only 4 % of all COVID-19 studies. In order to enhance researchers' and the public awareness of the seriousness on the COVID-19 derived soil pollution, we propose the viewpoint that "pandemic COVID-19 ends but soil pollution increases" and recommend a whole-cell biosensor based new method to assess the environmental risk of COVID-19 derived pollutants. This approach is expected to provide a new way for environmental risk assessment of soils affected by contaminants produced from the pandemic.


Subject(s)
COVID-19 , Environmental Pollutants , Humans , COVID-19/epidemiology , Pandemics , Environmental Pollution/analysis , Soil , Plastics , Risk Assessment
2.
Environ Pollut ; 321: 121080, 2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2252530

ABSTRACT

Medical wastes include all solid and liquid wastes that are produced during the treatment, diagnosis, and immunisation of animals and humans. A significant proportion of medical waste is infectious, hazardous, radioactive, and contains potentially toxic elements (PTEs) (i.e., heavy metal (loids)). PTEs, including arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg), are mostly present in plastic, syringes, rubber, adhesive plaster, battery wastes of medical facilities in elemental form, as well as oxides, chlorides, and sulfates. Incineration and sterilisation are the most common technologies adopted for the safe management and disposal of medical wastes, which are primarily aimed at eliminating deadly pathogens. The ash materials derived from the incineration of hazardous medical wastes are generally disposed of in landfills after the solidification/stabilisation (S/S) process. In contrast, the ash materials derived from nonhazardous wastes are applied to the soil as a source of nutrients and soil amendment. The release of PTEs from medical waste ash material from landfill sites and soil application can result in ecotoxicity. The present study is a review paper that aims to critically review the dynamisms of PTEs in various environmental media after medical waste disposal, the environmental and health implications of their poor management, and the common misconceptions regarding medical waste.


Subject(s)
Medical Waste Disposal , Medical Waste , Mercury , Metals, Heavy , Refuse Disposal , Animals , Humans , Incineration , Metals, Heavy/analysis , Hazardous Waste/analysis , Solid Waste/analysis
3.
Curr Opin Environ Sci Health ; : 100399, 2022 Oct 22.
Article in English | MEDLINE | ID: covidwho-2082634

ABSTRACT

Contagious diseases are needed to be monitored to prevent spreading within communities. Timely advice and predictions are necessary to overcome the consequences of those epidemics. Currently, emphasis has been placed on computer modelling to achieve the needed forecasts, the best example being the COVID-19 pandemic. Scientists used various models to determine how diverse sociodemographic factors correlated and influenced COVID-19 Global transmission and demonstrated the utility of computer models as tools in disease management. However, as modelling is done with assumptions with set rules, calculating uncertainty quantification is essential in infectious modelling when reporting the results and trustfully describing the limitations. This article summarizes the infectious disease modelling strategies, challenges, and global applicability by focusing on the COVID-19 pandemic.

4.
Environ Res ; 216(Pt 2): 114496, 2023 01 01.
Article in English | MEDLINE | ID: covidwho-2068953

ABSTRACT

The emergence of novel respiratory disease (COVID-19) caused by SARS-CoV-2 has become a public health emergency worldwide and perturbed the global economy and ecosystem services. Many studies have reported the presence of SARS-CoV-2 in different environmental compartments, its transmission via environmental routes, and potential environmental challenges posed by the COVID-19 pandemic. None of these studies have comprehensively reviewed the bidirectional relationship between the COVID-19 pandemic and the environment. For the first time, we explored the relationship between the environment and the SARS-CoV-2 virus/COVID-19 and how they affect each other. Supporting evidence presented here clearly demonstrates the presence of SARS-CoV-2 in soil and water, denoting the role of the environment in the COVID-19 transmission process. However, most studies fail to determine if the viral genomes they have discovered are infectious, which could be affected by the environmental factors in which they are found.The potential environmental impact of the pandemic, including water pollution, chemical contamination, increased generation of non-biodegradable waste, and single-use plastics have received the most attention. For the most part, efficient measures have been used to address the current environmental challenges from COVID-19, including using environmentally friendly disinfection technologies and employing measures to reduce the production of plastic wastes, such as the reuse and recycling of plastics. Developing sustainable solutions to counter the environmental challenges posed by the COVID-19 pandemic should be included in national preparedness strategies. In conclusion, combating the pandemic and accomplishing public health goals should be balanced with environmentally sustainable measures, as the two are closely intertwined.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Ecosystem , Pandemics , Plastics , SARS-CoV-2
5.
Heliyon ; 8(7): e09859, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1914441

ABSTRACT

Menstrual hygiene waste management has received lack of attention and hence it has been poorly investigated, mainly due to its association to social and cultural aspects of a natural process, that is often surrounded of entrenched stigma and taboos. Therefore, data about quantities and full lifecycle of the generated waste are often not available or suffer of large incertitude. However, this argument represents a relevant and critical issue, not only for the health of the women, their equality, and dignity, but also possible associated environmental concerns. This work highlights the necessity and the urgency to face the problems associated with menstrual hygiene waste, which cannot be still considered only relegated to low-income countries. It gives the dimension of the waste associated to migrants in the incoming areas, which is often neglected in sanitation program implementation. This work also describes the existing knowledge gaps and suggests some actions to implement in the next future. In the pandemic context, menstrual hygiene needs urgent attention, also to understand the possible implication of this waste, generated for example in refugees' camps, in SARS-CoV-2 spread, and to prevent eventual unknown environmental issues connected with the reconvention of some factories from the production of menstrual hygiene products to facemasks manufacture.

6.
Chem Eng J ; 441: 135936, 2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-1814229

ABSTRACT

The global data on the temporal tracking of the COVID-19 through wastewater surveillance needs to be comparatively evaluated to generate a proper and precise understanding of the robustness, advantages, and sensitivity of the wastewater-based epidemiological (WBE) approach. We reviewed the current state of knowledge based on several scientific articles pertaining to temporal variations in COVID-19 cases captured via viral RNA predictions in wastewater. This paper primarily focuses on analyzing the WBE-based temporal variation reported globally to check if the reported early warning lead-time generated through environmental surveillance is pragmatic or latent. We have compiled the geographical variations reported as lead time in various WBE reports to strike a precise correlation between COVID-19 cases and genome copies detected through wastewater surveillance, with respect to the sampling dates, separately for WASH and non-WASH countries. We highlighted sampling methods, climatic and weather conditions that significantly affected the concentration of viral SARS-CoV-2 RNA detected in wastewater, and thus the lead time reported from the various climatic zones with diverse WASH situations were different. Our major findings are: i) WBE reports around the world are not comparable, especially in terms of gene copies detected, lag-time gained between monitored RNA peak and outbreak/peak of reported case, as well as per capita RNA concentrations; ii) Varying sanitation facility and climatic conditions that impact virus degradation rate are two major interfering features limiting the comparability of WBE results, and iii) WBE is better applicable to WASH countries having well-connected sewerage system.

7.
J Hazard Mater Lett ; 1: 100001, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-1605945

ABSTRACT

Increased concern has recently emerged pertaining to the occurrence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in aquatic environment during the current coronavirus disease 2019 (COVID-19) pandemic. While infectious SARS-CoV-2 has yet to be identified in the aquatic environment, the virus potentially enters the wastewater stream from patient excretions and a precautionary approach dictates evaluating transmission pathways to ensure public health and safety. Although enveloped viruses have presumed low persistence in water and are generally susceptible to inactivation by environmental stressors, previously identified enveloped viruses persist in the aqueous environment from days to several weeks. Our analysis suggests that not only the surface water, but also groundwater, represent SARS-CoV-2 control points through possible leaching and infiltrations of effluents from health care facilities, sewage, and drainage water. Most fecally transmitted viruses are highly persistent in the aquatic environment, and therefore, the persistence of SARS-CoV-2 in water is essential to inform its fate in water, wastewater and groundwater and subsequent human exposure.

9.
Curr Pollut Rep ; 6(4): 468-479, 2020.
Article in English | MEDLINE | ID: covidwho-1309116

ABSTRACT

Prevalence of SARS-CoV-2 in the aquatic environment pertaining to the COVID-19 pandemic has been a global concern. Though SARS-CoV-2 is known as a respiratory virus, its detection in faecal matter and wastewater demonstrates its enteric involvement resulting in vulnerable aquatic environment. Here, we provide the latest updates on wastewater-based epidemiology, which is gaining interest in the current situation as a unique tool of surveillance and monitoring of the disease. Transport pathways with its migration through wastewater to surface and subsurface waters, probability of infectivity and ways of inactivation of SARS-CoV-2 are discussed in detail. Epidemiological models, especially compartmental projections, have been explained with an emphasis on its limitation and the assumptions on which the future predictions of disease propagation are based. Besides, this review covers various predictive models to track and project disease spread in the future and gives an insight into the probability of a future outbreak of the disease.

SELECTION OF CITATIONS
SEARCH DETAIL